218 research outputs found

    Effects of the Pinggan Qianyang Recipe on MicroRNA Gene Expression in the Aortic Tissue of Spontaneously Hypertensive Rats

    Get PDF
    The present study aimed to investigate the relationship between miRNAs and in spontaneously hypertensive rats (SHR) vascular remodeling and analyze the impact of the Pinggan Qianyang recipe (PQR) on miRNAs. Mammalian miRNA microarrays containing 509 miRNA genes were employed to analyze the differentially expressed miRNAs in the three groups. MiRNAs were considered to be up- or downregulated when the fluorescent intensity ratio between the two groups was over 4-fold. Validation of those miRNAs changed in SHR after PQR treatment was used by real-time quantitative RT-PCR (qRT-PCR). Compared with the normal group, a total of 32 miRNAs were differentially expressed by more than twofold; among these, 18 were upregulated and 14 were downregulated in the model group. Compared with the normal group, there were a number of 17 miRNAs which were significantly expressed by more than twofold in the different expressions of 32 miRNAs; among these, 10 were downregulated and 7 were upregulated in the PQR group. qRT-PCR verified that miR-20a, miR-145, miR-30, and miR-98 were significantly expressed in the three groups. These data show that PQR could exert its antihypertensive effect through deterioration of the vascular remodeling process. The mechanism might be associated with regulating differentially expressed miRNAs in aorta tissue

    A Sparsity-Based InSAR Phase Denoising Algorithm Using Nonlocal Wavelet Shrinkage

    Get PDF
    An interferometric synthetic aperture radar (InSAR) phase denoising algorithm using the local sparsity of wavelet coefficients and nonlocal similarity of grouped blocks was developed. From the Bayesian perspective, the double-l1 norm regularization model that enforces the local and nonlocal sparsity constraints was used. Taking advantages of coefficients of the nonlocal similarity between group blocks for the wavelet shrinkage, the proposed algorithm effectively filtered the phase noise. Applying the method to simulated and acquired InSAR data, we obtained satisfactory results. In comparison, the algorithm outperformed several widely-used InSAR phase denoising approaches in terms of the number of residues, root-mean-square errors and other edge preservation indexes

    Protecting the Future: Neonatal Seizure Detection with Spatial-Temporal Modeling

    Full text link
    A timely detection of seizures for newborn infants with electroencephalogram (EEG) has been a common yet life-saving practice in the Neonatal Intensive Care Unit (NICU). However, it requires great human efforts for real-time monitoring, which calls for automated solutions to neonatal seizure detection. Moreover, the current automated methods focusing on adult epilepsy monitoring often fail due to (i) dynamic seizure onset location in human brains; (ii) different montages on neonates and (iii) huge distribution shift among different subjects. In this paper, we propose a deep learning framework, namely STATENet, to address the exclusive challenges with exquisite designs at the temporal, spatial and model levels. The experiments over the real-world large-scale neonatal EEG dataset illustrate that our framework achieves significantly better seizure detection performance.Comment: Accepted in IEEE International Conference on Systems, Man, and Cybernetics (SMC) 202

    Complete sequences of KPC-2-encoding plasmid p628-KPC and CTX-M-55-encoding p628-CTXM coexisted in Klebsiella pneumoniae

    Get PDF
    A carbapenem-resistant Klebsiella pneumoniae strain 628 was isolated from a human case of intracranial infection in a Chinese teaching hospital. Strain 628 produces KPC-2 and CTX-M-55 encoded by two different conjugative plasmids, i.e., the IncFIIK plasmid p628-KPC and the IncI1 plasmid p628-CTXM, respectively. blaKPC-2 is captured by a Tn1721-based unit transposon with a linear structure ΔTn3-ISKpn27-blaKPC-2-ΔISKpn6-ΔTn1721, and this transposon together with a mercury resistance (mer) gene locus constitutes a 34 kb acquired drug-resistance region. blaKPC-2 has two transcription starts (nucleotides G and C located at 39 and 250 bp upstream of its coding region, respectively), which correspond to two promoters, i.e., the intrinsic P1 and the upstream ISKpn27/Tn3-provided P2 with the core -35/-10 elements TAATCC/TTACAT and TTGACA/AATAAT, respectively. blaCTX-M-55 is mobilized in an ISEcp1-blaCTX-M-55-Δorf477 transposition unit and appears to be the sole drug-resistant determinant in p628-CTXM. blaCTX-M-55 possesses a single transcription start (nucleotides G located at 116 bp upstream of its coding region), corresponding to the ISEcp1-provided P1 promoter with the core -35/-10 element TTGAAA/TACAAT. All the above detected promoters display a characteristic of constitutive expression. Coexistence of blaKPC and blaCTX-M in K. pneumoniae has been reported many times, but this is the first report to gain deep insights into genetic platforms, promoters, and expression of the two coexisted bla genes with determination of entire nucleotide sequences of the two corresponding plasmids

    Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix

    Get PDF
    Abstract Background Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Methods Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. Results We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. Conclusions The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug and drug-delivery system development

    Three-dimensional petrographical investigations on borehole rock samples: a comparison between X-ray computed- and neutron tomography

    Get PDF
    Technical difficulties associated with excavation works in tectonized geological settings are frequent. They comprise instantaneous and/or delayed convergence, sudden collapse of gallery roof and/or walls, outpouring of fault-filling materials and water inflows. These phenomena have a negative impact on construction sites and their safety. In order to optimize project success, preliminary studies on the reliability of rock material found on site are needed. This implies in situ investigations (surface mapping, prospective drilling, waterflow survey, etc.) as well as laboratory investigations on rock samples (permeability determination, moisture and water content, mineralogy, petrography, geochemistry, mechanical deformation tests, etc.). A set of multiple parameters are then recorded which permit better insight on site conditions and probable behavior during excavation. Because rock formations are by nature heterogeneous, many uncertainties remain when extrapolating large-scale behavior of the rock mass from analyses of samples order of magnitudes smaller. Indirect large-scale field investigations (e.g. geophysical prospecting) could help to better constrain the relationships between lithologies at depth. At a much smaller scale, indirect analytical methods are becoming more widely used for material investigations. We discuss in this paper X-ray computed tomography (XRCT) and neutron tomography (NT), showing promising results for 3D petrographical investigations of the internal structure of opaque materials. Both techniques record contrasts inside a sample, which can be interpreted and quantified in terms of heterogeneity. This approach has the advantage of combining genetic parameters (physico-chemical rock composition) with geometric parameters resulting from alteration or deformation processes (texture and structure). A critical analysis of such 3D analyses together with the results of mechanical tests could improve predictions of short- and long-term behavior of a rock unit. Indirect methods have the advantage of being non-destructive. However, as it is the case with large-scale geophysical surveying, XRCT and NT are affected by several error factors inherent to the interaction of a radiation modality (X-ray or neutron beam) with the atomic structure of the investigated materials. Recorded signals are therefore in particular cases not artifact-free and need to be corrected in a subsequent stage of data processin

    A critical role of AREG for bleomycin-induced skin fibrosis

    Get PDF
    We report our discovery of an important player in the development of skin fibrosis, a hallmark of scleroderma. Scleroderma is a fibrotic disease, affecting 70,000 to 150,000 Americans. Fibrosis is a pathological wound healing process that produces an excessive extracellular matrix to interfere with normal organ function. Fibrosis contributes to nearly half of human mortality. Scleroderma has heterogeneous phenotypes, unpredictable outcomes, no validated biomarkers, and no effective treatment. Thus, strategies to slow down scleroderma progression represent an urgent medical need. While a pathological wound healing process like fibrosis leaves scars and weakens organ function, oral mucosa wound healing is a scarless process. After re-analyses of gene expression datasets from oral mucosa wound healing and skin fibrosis, we discovered that several pathways constitutively activated in skin fibrosis are transiently induced during oral mucosa wound healing process, particularly the amphiregulin (Areg) gene. Areg expression is upregulated ~ 10 folds 24hrs after oral mucosa wound but reduced to the basal level 3 days later. During bleomycin-induced skin fibrosis, a commonly used mouse model for skin fibrosis, Areg is up-regulated throughout the fibrogenesis and is associated with elevated cell proliferation in the dermis. To demonstrate the role of Areg for skin fibrosis, we used mice with Areg knockout, and found that Areg deficiency essentially prevents bleomycin-induced skin fibrosis. We further determined that bleomycin-induced cell proliferation in the dermis was not observed in the Areg null mice. Furthermore, we found that inhibiting MEK, a downstream signaling effector of Areg, by selumetinib also effectively blocked bleomycin-based skin fibrosis model. Based on these results, we concluded that the Areg-EGFR-MEK signaling axis is critical for skin fibrosis development. Blocking this signaling axis may be effective in treating scleroderma

    Evolution of Near-Well Damage Caused by Fluid Injection through Perforations in Wellbores in Low-Permeability Reservoirs: A Case Study in a Shale Oil Reservoir

    Get PDF
    AbstractDuring the development of shale oil resources, fluid injection is usually involved in the process of hydraulic fracturing. Fluid injection through perforations causes near-well damage, which is closely related to the subsequent initiation and propagation of hydraulic fractures. This study is focused on the characterization of the temporal and spatial evolving patterns for near-well damage induced by fluid injection through perforations in the early stage of hydraulic fracturing. A coupled hydromechanical model is introduced in a case study in a shale oil reservoir in northwestern China. The model considers porous media flow during fluid injection. It also considers elasticity in the rock skeleton before the damage. Once the damage is initiated, a damage factor is employed to quantify the magnitude of injection-induced damage. Results show that damage evolution is highly sensitive to perforation number and injection rate in each individual perforation. Damage propagation is more favorable in the direction of the initial maximum horizontal principal stress. The propagation of damage is drastic at the beginning of fluid injection, while the damage front travels relatively slow afterward. This study provides insights into the near-well damage evolution before main fractures are initiated and can be used as a reference for the optimization of perforation parameters in the hydraulic fracturing design in this shale oil field

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.
    • …
    corecore